segunda-feira, 30 de maio de 2011

Johann Carl Friedrich Gauss 30 de abril de 1777 a 23 de fevereiro de 1855


Johann Carl Friedrich Gauss (ou Gauß pronúncia ajuda · ficheiro · ouvir (Braunschweig30 de Abril de 1777 — Göttingen23 de Fevereiro de 1855), foi um matemáticoastrônomo efísico alemão. Conhecido como o príncipe dos matemáticos, muitos o consideram o maior gênio da história da matemática. Seu QI foi estimado por psicólogos de cognição em cerca de 240.[carece de fontes]
Seu pai, Gerhard Diederich, era jardineiro e pedreiro. Severo e brutal, tudo fez para impedir que seu filho desenvolvesse seu grande potencial.[carece de fontes] Foi salvo por sua mãe Dorothea e seu tio Friederich que percebeu da inteligência de seu sobrinho.[carece de fontes]
Tinha memória fotográfica, tendo retido as impressões da infância e da meninice nítidas até a sua morte. Ressentia-se de que seu tio Friederich, um gênio, perdera-se pela morte prematura.[carece de fontes]
Antes disso já aprendera a ler e a somar sozinho. Aos sete anos entrou para a escola. Segundo uma história famosa, seu diretor, Butner, pediu que os alunos somassem os números inteiros de um a cem. Mal havia enunciado o problema e o jovem Gauss colocou sua lousa sobre a mesa, dizendo: ligget se! Sua resposta, 5050, foi encontrada através do raciocínio que demonstra a fórmula da soma de uma progressão aritmética.[1] Alguns autores argumentam que o problema seria de ordem bastante mais complexa, sugerindo que poderia ser uma soma de uma progressão aritmética como 81097 + 81395 + 81693 + ..... + 110897[carece de fontes].
Butner ficou tão atônito com a proeza de um menino de dez anos que pagou do próprio bolso livros de aritmética para ele, que os absorvia instantaneamente. Reconhecendo que fora ultrapassado pelo aluno, passou o ensino para seu jovem assistente, Johann Martin Bartels(1769-1856), apaixonado pela matemática. Entre Bartels, com dezessete anos, e o aluno de dez nasceu uma boa amizade que durou toda a vida. Eles estudavam juntos, ajudando-se em suas dificuldades.
O encontro de Gauss com o teorema binômio inspirou-o para alguns de seus maiores trabalhos, tornando-se Gauss o primeiro "rigorista". Insatisfeito com o que ele e Bartels encontravam em seus livros, Gauss foi além, e iniciou a análise matemática.
Nenhum matemático anterior tinha a menor concepção do que é agora aceitável como prova, envolvendo o processo infinito. Ele foi o primeiro a ver que, a "prova" que pode levar a absurdos como "menos 1 é igual ao infinito", não é prova nenhuma. Mesmo que, em alguns casos, uma fórmula dê resultados consistentes, ela não tem lugar na matemática até que a precisa condição sob a qual ela continuará a se submeter tenha sido determinada consistentemente. O rigor imposto por Gauss à análise matemática tornou-a totalmente diferente e superou toda a análise matemática feita por seus antecessores.

Índice

 [esconder]

[editar]Matemática

Disquistiones
Artihmaticae
Estátua de Gauss em Braunschweig.
Aos doze anos Gauss já olhava com desconfiança para os fundamentos da geometria euclidiana; aos dezesseis já tinha tido seu primeiro vislumbre de uma geometria diferente da deEuclides. Um ano mais tarde, começou uma busca crítica das provas, na teoria dos números, que tinham sido aceitas por seus predecessores e tomou a decisão de preencher os vazios e completar o que tinha sido feito pela metade. Aritmética, o campo de seus primeiros triunfos, tornou-se seu estudo favorito e o campo de sua obra prima. Para que a prova fosse absolutamente certa, Gauss acrescentou uma fecunda e engenhosa matemática que nunca foi superada.
Bartels apresentou-o a alguns influentes homens em Brunswick que, impressionados, levaram-no para queCarl Wilhelm Ferdinand, Duque de Brunswick o conhecesse. O Duque de Brunswick imediatamente assegurou que sua educação no Collegium Carolinum continuaria até ser completada. Nos três anos em que ali esteve dominou os mais importantes trabalhos de Leonhard EulerLagrange e, acima de tudo, oPrincípia de Newton. Por seus estudos redescobriu, e foi o primeiro a provar, "a jóia da aritmética," o "theorema aureum" e "teorema de ouro", conhecido como a lei da reciprocidade quadrática, que Euler tinha induzido e Legendre tentara provar, sem qualquer resultado.
Com a idade de quinze anos fez um grande avanço em línguas clássicas estudando sozinho e com a ajuda de amigos mais velhos. Teve a oposição de seu pai mas Dorothea Gauss venceu a resistência do marido e o Duque patrocinou dois anos de curso no Gymnasium. Ali ele assombrou a todos por sua maestria nos clássicos.
Tinha inventado (aos dezoito anos) o método dos mínimos quadrados, que hoje é indispensável em pesquisas geodésicas, e em todos os trabalhos em que o "mais provável" valor, de alguma coisa que é medida, é deduzido após um grande número de medidas. Gauss dividiu o mérito com Legendre, que publicou o método independentemente em 1806. Este trabalho foi o começo do interesse de Gauss na teoria dos erros de observação. A lei de Gauss da distribuição normal de erros e sua curva em formato de sino, que a acompanha, é hoje familiar para todos que trabalham com estatística.
A decisão sobre o seu verdadeiro caminho, se o da filologia ou da matemática, foi feita em 30 de Março de 1796 quando começou seu diário científico, que representa um dos mais preciosos documentos da história da matemática. O estudo de línguas passou a ser um passatempo para o resto de sua vida.
O diário só foi conhecido pela ciência em 1898, quarenta e três anos depois de sua morte, quando a Sociedade Real de Göttingen o pediu emprestado a um neto de Gauss para estudo crítico. Ali se encontram dezenove pequenas páginas e contém 146 extremamente resumidos registros de descobertas ou resultados de cálculos, o último deles datado de 9 de Julho de 1814.
Nem todas as descobertas de Gauss no período prolífico de 1796 a 1814 foram anotadas, mas muitas das que ele rascunhou são suficientes para estabelecer a prioridade de Gauss em vários campos (funções elípticas, por exemplo) onde alguns de seus contemporâneos se recusaram a acreditar que ele os havia precedido.
Muito ficou encerrado por anos ou décadas neste diário. Gauss nunca reivindicou a autoria de descobertas a que ele se antecipara (algumas se tornaram importantes campos da matemática no século XIX). No diário, há anotações muito pessoais, como por exemplo, no dia 10 de Julho de1798 há o seguinte registro: ΕΥΡΗΚΑ! NUM = v + v + v. Traduzindo-se: Eureka! Todo número positivo é a soma de três números triangulares.
Embora o sentido de alguns registros esteja perdido para sempre, a maior parte é suficientemente clara. Alguns nunca foram publicados, segundo ele, por considerar seus trabalhos científicos apenas como resultado da profunda compulsão de sua natureza. Publicá-los para o conhecimento de outros lhe era inteiramente indiferente. Disse também que um tal volume de novas idéias trovejaram em sua mente, antes de ter completado vinte anos que, dificilmente, poderia controlá-las, só havendo tempo de registrar uma pequena fração delas.
Gauss apresentava provas sintéticas e conclusões indestrutíveis de suas descobertas às quais nada poderia ser acrescentado ou retirado.Uma catedral não é uma catedral - disse - até que o último andaime tenha sido retirado. Com este ideal diante de si, Gauss preferia polir sua obra muitas vezes, ao invés de publicar um grosseiro esboço. Seu princípio era: uma árvore com poucos frutos maduros (Pauca sed matura).
Os frutos deste esforço em busca da perfeição estavam, na verdade, maduros mas nem sempre facilmente digeríveis. Todos os passos pelos quais o gol tinha sido atingido tinham sido omitidos, não era fácil para seus seguidores redescobrir a estrada pela qual ele tinha caminhado. Conseqüentemente, alguns de seus trabalhos tiveram que esperar por intérpretes altamente qualificados antes que o mundo da matemática pudesse entendê-los.
Só os matemáticos do século XIX conscientizaram quanto Gauss tinha previsto antes de 1800. Caso ele tivesse divulgado o que sabia, é possível que a matemática estivesse meio século mais adiantada do que se encontra. Niels Henrik Abel e Jacobi poderiam ter começado de onde Gauss terminou, ao invés de terem que redescobrir o que Gauss já sabia antes que eles tivessem nascido.
Os três anos (outubro de 1795 - setembro de 1798) na Universidade de Göttingen foram os mais prolíficos da vida de Gauss. Graças à generosidade do Duque Ferdinand o jovem não teve que se preocupar com finanças.
Em setembro de 1798 foi para a Universidade de Helmstedt, tendo sido precedido por sua fama, hospedou-se na casa do professor de Matemática Johann Friedrick Pfaff (1765-1825).
No outono europeu de 1798, aos 21 anos, finalizou a Disquisitiones. O livro só foi publicado em setembro de 1801. Em agradecimento por tudo que Ferdinand lhe havia feito Gauss dedicou seu livro ao Duque - Sereníssimo Pricipi ac Domino Carolo Guiliermo Ferdinando. Foi uma justa homenagem àquele que o salvara tantas vezes (arranjando alunos, pagando pela impressão de sua dissertação do doutorado (Universidade de Helmstedt, 1799), assegurou uma modesta pensão que lhe permitiria continuar seu trabalho científico livre dos obstáculos da pobreza…) Gauss escreveu em sua dedicatória "Sua bondade libertou-me de outras responsabilidades e permitiu que eu me dedicasse exclusivamente a este trabalho."
Disquisitiones representou seu adeus à matemática pura, como seu interesse exclusivo. O livro é de difícil leitura, até mesmo para especialistas, mas os tesouros que contém estão agora disponíveis graças ao trabalho do amigo e discípulo de Gauss, Johann Peter Gustav Lejeune Dirichlet (1804-1859).
Expandiu sua atividade para incluir os aspectos matemáticos e práticos na astronomia, geodésica e eletromagnetismo.

[editar]Astronomia

O segundo grande estágio da carreira de Gauss começou no primeiro dia do século XIX, também um grande marco na história da filosofia eastronomia, quando Giuseppe Piazzi (1746-1826) de Palermo, no dia da abertura do século XIX, reconheceu o que tinha sido inicialmente tomado por um pequeno cometa aproximando-se do Sol, como um novo planeta - mais tarde denominado Ceres, o primeiro do fervilhante número de menores planetas hoje conhecidos. A descoberta deste novo planeta originou um sarcástico ataque aos astrônomos que presumiam a existência de um oitavo planeta. Disse Hegel: "Poderiam eles dar alguma atenção à filosofia? Se o fizessem reconheceriam imediatamente que só podem existir sete planetas, nem mais nem menos. Sua busca portanto é uma estúpida perda de tempo".
Gauss desprezava os filósofos que se ocupavam de assuntos científicos, por eles não compreendidos. E levou a sério a existência de Ceres.
Seus amigos e seu pai estavam impacientes para que o jovem Gauss encontrasse algum trabalho lucrativo, agora que o Duque já dera por terminada sua ajuda.
Este novo planeta descoberto encontrava-se numa posição que tornava extremamente difícil sua observação. Calcular sua órbita com tão escassos detalhes disponíveis poderia ser quase impossível. Mas para o jovem cuja memória inumana o capacitava a dispensar uma tábua de logaritmos quando ele estava apressado, toda esta aritmética infinda - logística, não aritmética - não assustava. Era, ao contrário, um desafio tentador, que lhe daria fama e dinheiro.
Após vinte anos de trabalho Ceres foi redescoberta, precisamente onde os engenhosos e detalhados cálculos de Gauss tinham predito que ela seria encontrada. 2 PalasVesta e Juno, planetas insignificantes da diminuta Ceres foram rapidamente pegos pelos telescópios. Cálculos que haviam tomado três dias de trabalho a Leonhard Euler (tendo sido dito que um deles o teria levado a cegueira) eram agora simples exercícios de algumas laboriosas horas. Gauss prescreveu o método e a rotina.
Em 1809 ele publicou sua segunda obra prima "Teoria do Movimento dos Corpos Celestiais Girando a volta do Sol", na qual se encontra uma exaustiva explanação da determinação das órbitas dos planetas e cometas.
Gauss não estava isento de inimigos. Foi ridicularizado por aqueles que consideravam um desperdício de tempo computar a órbita de um planeta insignificante. Trinta anos depois, quando Gauss assentou os fundamentos da teoria matemática de eletromagnetismo e inventou otelégrafo elétrico foi, mais uma vez, ridicularizado.
O Duque de Bruswick aumentou a pensão possibilitando seu casamento em outubro de 1805, com a idade de vinte e seis anos com Johanne Osthof de Brunswick transformando sua vida, como ele próprio disse a um amigo, numa eterna primavera com novas e brilhantes cores.
A morte do Duque Brunswick, obrigou-o a encontrar algum forma de sobrevivência para sustentar sua família. Não foi difícil. Em 1807 ele foi designado diretor do Observatório de Göttingen com o privilégio - e dever, quando necessário - de ensinar matemática aos alunos.
O salário era modesto mas suficiente para suas necessidades e de sua família. O luxo nunca o atraiu e sua vida não se modificara nos últimos vinte anos, tendo assim permanecido até a sua morte: em seu estúdio uma pequena mesa com cobertura verde, uma mesa alta pintada de branco, um sofá estreito e, depois do seu septuagésimo aniversário, uma cadeira de braços com uma capa de veludo. Isto era tudo de que ele precisava.
A péssima situação da Alemanha sob a pilhagem dos franceses e a perda de sua primeira mulher arruinaram a saúde de Gauss. Sua predisposição para hipocondria, agravada pelo trabalho incessante, piorou seu estado. Sua infelicidade nunca foi dividida com seus amigos. Para seu diário matemático ele confidenciou: "a morte seria mais querida do que tal vida".
Então, quase exatamente após seu segundo casamento, o grande cometa de 1811, o primeiro observado por Gauss, no crepúsculo do dia 22 de Agosto, brilhou sem se fazer anunciar. Foi a oportunidade de testar os instrumentos que Gauss tinha inventado para dominar os planetas menores.
Seus instrumentos provaram ser adequados. Enquanto isso, o povo supersticioso da Europa, com olhos apavorados, seguia o espetáculo em que o cometa arrastava sua cimitarra de fogo na sua aproximação do Sol, vendo na brilhante lâmina um aviso do céu de que o Rei dos Reis estava irado com Napoleão e cansado da crueldade do tirano. Gauss teve a satisfação de ver o cometa seguir a rota por ele calculada até o último centímetro. Por seu lado, o crédulo povo viu comprovada sua predição, quando o Grande Exército de Napoleão Bonaparte foi destruído nas planícies geladas da Rússia. Este foi um dos raros momentos em que a explicação popular cabe nos fatos dos quais resultam conseqüências mais importantes do que a científica.
Gauss obteve avanços significativos em geometria e na aplicação da matemática para a teoria Newtoniana da atração e eletromagnetismo. Como foi possível a um único homem realizar tão colossal massa de trabalho da mais alta categoria? Com sua modéstia característica Gauss declarou que "se outros tivessem pensado nas verdades matemáticas tão profunda e continuamente quanto eu, eles poderiam, ter feito minhas descobertas".
Ele disse que durante quatro anos, raramente se passava uma semana sem que ele não despendesse algum tempo para fazer alguma descoberta. A solução finalmente vinha por si mesma como um relâmpago. Não se pode imaginar, entretanto que a resposta tivesse surgido por si mesma como uma nova estrela, sem as horas despendidas em sua busca. Algumas vezes, depois de passar dias ou semanas sem qualquer resultado em alguma pesquisa, depois de uma noite de insônia, o resultado surgia inteiro, brilhando em sua mente. A inteligência para intensa e prolongada concentração era parte do seu segredo.
Geodésia deve a Gauss a invenção do heliótropo, um engenhoso aparelho pelo qual podem ser transmitidos sinais praticamente instantâneos através da luz refletida. Os instrumentos astronômicos também receberam notável avanço através de suas mãos. E, como último exemplo da engenhosidade de Gauss em 1833 ele inventou o telégrafo elétrico que ele e seu companheiro de trabalho Wilhelm Eduard Weber (1804-1891) usavam para trocar mensagens.
Dava pouca importância ao uso prático de suas invenções. Gauss nunca foi atraído pelo reconhecimento público oficial, embora sua competência em estatística, seguro e aritmética política pudessem ter feito dele um bom ministro de dinheiro.

[editar]Trabalho de Gauss na eletricidade

Na física, lei de Gauss é a lei que estabelece a relação entre o fluxo elétrico que passa através de uma superfície fechada e a quantidade de carga elétrica que existe dentro do volume limitado por esta superfície. A lei de Gauss é uma das quatro Equações de Maxwell e foi elaborada por Carl Friedrich Gauss no século XIX.

[editar]Outras atividades

Até sua última doença ele encontrou completa satisfação na ciência como simples recreação. Tinha também grande interesse na literatura europeia que lia nos originais já que dominava muitas línguas. O estudo de línguas estrangeiras e novas ciências (inclusive botânica emineralogia) era seu passatempo. Com a idade de sessenta e dois anos ele começou um intensivo estudo de russo sem a orientação de ninguém. Em dois anos ele estava mantendo correspondência com amigos cientistas de São Petersburgo inteiramente em russo. Na opinião dos russos que o visitavam em Göttingen, ele também falava perfeitamente. Ele também tentou o Sânscrito mas não gostou.
Atraía-o especialmente a literatura inglesa, embora seu aspecto mais sóbrio nas tragédias de William Shakespeare fosse demais para a aguda sensitividade do grande matemático para todas as formas de sofrimento. Ele buscava livros mais felizes. Os livros de Sir Walter Scott (seu contemporâneo) eram devorados tão logo publicados. Uma grande gargalhada do astrônomo matemático saudou o escorregão de Sir Walter quando escreveu "a lua cheia levanta-se a noroeste" ´e ele levou dias corrigindo todas as cópias que encontrava.
Seu terceiro hobby, política mundial, tomava-lhe uma ou duas horas por dia. Visitando o museu literário regularmente, ele se mantinha informado de todos os eventos lendo os jornais que o museu assinava.
A maior fonte da força de Gauss era sua serenidade científica, livre de ambição pessoal. Todo o seu interesse estava voltado para o avanço da matemática. Rivais duvidavam de sua declaração de que os tinha antecipado na descoberta que faziam. Não dizia isto com jactância, mas como um fato e não se preocupava em comprovar a prioridade através da apresentação de seu diário. Apenas declarava, apoiando-se em seus próprios méritos.

[editar]Últimos dias

Seus últimos anos foram cheios de honrarias mas não da felicidade que ele teria merecido. Pela primeira vez em mais de vinte anos ele deixouGöttingen, no dia 16 de Junho de 1854, para ver a estrada de ferro que estava sendo construída entre sua cidade e Kassel. Gauss sempre tivera agudo interesse pela construção e operação de estradas de ferro; agora ele veria uma sendo construída.
No caminho, os cavalos dispararam; ele foi atirado para fora da carruagem. Não ficou ferido mas muito chocado. Recuperando-se, ainda teve o prazer de assistir à abertura das cerimônias quando a estrada de ferro chegou a Göttingen em 31 de Julho de 1854.
No começo do ano seguinte surgiram os sintomas de gota. Inteiramente consciente, praticamente até ao fim, morreu pacificamente na manhã de 23 de Fevereiro de 1855.

Referências

  1.  Tellings of the Gauss Anedocte. Página visitada em 11 de julho de 2008.
  • Simmons, J.. The Giant Book of Scientists: The 100 Greatest Minds of All Time. Sydney: The Book Company, 1996.
  • Tent, Margaret. The Prince of Mathematics: Carl Friedrich Gauss. [S.l.]: A K Peters, 2006.

[editar]Ligações externas

Probabilidade


A palavra probabilidade deriva do Latim probare (provar ou testar). Informalmente, provável é uma das muitas palavras utilizadas para eventos incertos ou conhecidos, sendo também substituída por algumas palavras como “sorte”, “risco”, “azar”, “incerteza”, “duvidoso”, dependendo do contexto.
Tal como acontece com a teoria da mecânica, que atribui definições precisas a termos de uso diário, como trabalho e força, também a teoria das probabilidades tenta quantificar a noção de provável.
Em essência, existe um conjunto de regras matemáticas para manipular a probabilidade, listado no tópico "Formalização da probabilidade" abaixo. (Existem outras regras para quantificar a incerteza, como a teoria de Dempster-Shafer e a lógica difusa (em inglês fuzzy logic), mas estas são, em essência, diferentes e incompatíveis com as leis da probabilidade tal como são geralmente entendidas). No entanto, está em curso um debate sobre o que é, exatamente, que as regras se aplicam; a este tópico chama-se interpretações da probabilidade.

Índice

 [esconder]

[editar]Conceitos de probabilidade

A ideia geral da probabilidade é frequentemente dividida em dois conceitos relacionados:
  • Probabilidade de frequência ou probabilidade aleatória, que representa uma série de eventos futuros cuja ocorrência é definida por alguns fenômenos físicos aleatórios. Este conceito pode ser dividido em fenômenos físicos que são previsíveis através de informação suficiente e fenômenos que são essencialmente imprevisíveis. Um exemplo para o primeiro tipo é uma roleta, e um exemplo para o segundo tipo é umdecaimento radioativo.
  • Probabilidade epistemológica ou probabilidade Bayesiana, que representa nossas incertezas sobre proposições quando não se tem conhecimento completo das circunstâncias causativas. Tais proposições podem ser sobre eventos passados ou futuros, mas não precisam ser. Alguns exemplos de probabilidade epistemológica são designar uma probabilidade à proposição de que uma lei da Física proposta seja verdadeira, e determinar o quão "provável" é que um suspeito cometeu um crime, baseado nas provas apresentadas.
É uma questão aberta se a probabilidade aleatória é redutível à probabilidade epistemológica baseado na nossa inabilidade de predizer com precisão cada força que poderia afetar o rolar de um dado, ou se tais incertezas existem na natureza da própria realidade, particularmente em fenômenos quânticos governados pelo princípio da incerteza de Heisenberg. Embora as mesmas regras matemáticas se apliquem não importando qual interpretação seja escolhida, a escolha tem grandes implicações pelo modo em que a probabilidade é usada para modelar o mundo real.

[editar]Marcos Históricos

O estudo científico da probabilidade é um desenvolvimento moderno. Os jogos de azar mostram que o interesse em quantificar as ideias da probabilidade tem existido por milênios, mas as descrições matemáticas de uso nesses problemas só apareceram muito mais tarde.
Cardano, no livro Liber de Ludo Aleae, estudou as probabilidades associadas ao arremesso de dados, concluindo que a distribuição de 2 dados deve ser obtida dos 36 pares ordenados de resultados, e não apenas dos 21 pares (não-ordenados).[1]
A doutrina das probabilidades vêm desde a correspondência entre Pierre de Fermat e Blaise Pascal (1654). Christiaan Huygens (1657) deu o primeiro tratamento científico ao assunto. A Arte da Conjectura de Jakob Bernoulli (póstumo, 1713) e a Doutrina da Probabilidade de Abraham de Moivre (1718) trataram o assunto como um ramo da matemática.
A teoria dos erros pode ser originada do Opera Miscellanea de Roger Cotes (póstumo, 1722), mas um ensaio preparado por Thomas Simpsonem 1755 (impresso em 1756) foi o primeiro a aplicar a teoria na discussão de erros de observação. A reimpressão (1757) desse ensaio estabelece os axiomas que erros positivos e negativos são igualmente prováveis, e que há certos limites que se podem associar em que pode se supôr que todos os erros vão cair; erros contínuos são discutidos e uma curva de probabilidade é dada.
Pierre-Simon Laplace (1774) fez a primeira tentativa de deduzir uma regra para a combinação de observações dos princípios da teoria das probabilidades. Ele apresentou a lei da probabilidade dos erros por uma curva y = φ(x)x sendo qualquer erro e y sua probabilidades, e estabeleceu três propriedades dessa curva: (1) Ela é simétrica no eixo y; (2) ao eixo x, é assintótico; a probabilidade do erro quando x \rightarrow \inftyé 0; (3) a área abaixo da curva da função é 1, sendo certo de que um erro existe. Ele deduziu uma fórmula para o significado das três observações. Ele também deu (1781) uma fórmula para a lei da facilidade de erros (um termo devido a Lagrange, 1774), mas que levava a equações não gerenciáveis. Daniel Bernoulli (1778) introduziu o princípio do produto máximo das probabilidades de um sistema de erros concorrentes.
método dos mínimos quadrados deve-se ao matemático alemão Johann Carl Friedrich Gauss (1777-1855). Gauss descreveu o método aos dezoito anos (1795), que hoje é indispensável nas mais diversas pesquisas. Adrien-Marie Legendre (1805), introduziu contribuições ao método em seu Nouvelles méthodes pour la détermination des orbites des comètes. Por ignorar o trabalho de Legendre, um escritor Americano-Irlandês, Robert Adrain, editor de "The Analyst" (1808), primeiro deduziu a lei da facilidade do erro,
\phi(x) = ce^{-h^2 x^2}
c e h sendo constantes dependendo da precisão da observação. Ele deu duas provas, sendo a segunda essencialmente a mesma de John Herschel (1850). Carl Friedrich Gauß deu a primeira prova que parece ser conhecida na Europa (a terceira após a de Adrain) em 1809. Provas posteriores foram dadas por Laplace (1810, 1812), Gauß (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel (1838), Donkin (1844, 1856), e Morgan Crofton (1870). Outros que contribuíram foram Ellis (1844), De Morgan (1864), Glaisher (1872), e Giovanni Schiaparelli(1875). A fórmula de Peters (1856) para r, o erro provável de uma observação simples, é bem conhecida.
No século XIX, os autores da teoria geral incluíam Laplace, Sylvestre Lacroix (1816), Littrow (1833), Adolphe Quetelet (1853), Richard Dedekind(1860), Helmert (1872), Hermann Laurent (1873), Liagre, Didion, e Karl PearsonAugustus De Morgan e George Boole melhoraram a exibição da teoria.
No lado geométricos, (veja geometria integral), os contribuidores da The Educational Times foram influentes (Miller, Crofton, McColl, Wolstenholme, Watson, e Artemas Martin).

[editar]Formalização da probabilidade

Dados, símbolos da probabilidade.
Como outras teorias, a teoria das probabilidades é uma representação dos conceitos probabilísticos em termos formais – isso é, em termos que podem ser considerados separadamente de seus significados. Esses termos formais são manipulados pelas regras da matemática e da lógica, e quaisquer resultados são então interpretados ou traduzidos de volta ao domínio do problema.
Houve pelo menos duas tentativas com sucesso de formalizar a probabilidade, que foram as formulações deKolmogorov e a de Cox. Na formulação de Kolmogorov, conjuntos são interpretados como eventos e a probabilidade propriamente dita como uma medida numa classe de conjuntos. Na de Cox, a probabilidade é entendida como uma primitiva (isto é, não analisada posteriormente) e a ênfase está em construir uma associação consistente de valores de probabilidade a proposições. Em ambos os casos, as leis da probabilidade são as mesmas, exceto por detalhes técnicos:
  1. uma probabilidade é um número entre 0 e 1;
  2. a probabilidade de um evento ou proposição e seu complemento, se somados, valem até 1; e
  3. probabilidade condicionada ou conjunta de dois eventos ou proposições é o produto da probabilidade de um deles e a probabilidade do segundo, condicionado na primeira.
O leitor vai encontrar uma exposição da formulação de Kolmogorov no artigo sobre teoria das probabilidades, e no artigo sobre o teorema de Cox a formulação de Cox. Veja também o artigo sobre os axiomas da probabilidade.

[editar]Representação e interpretação de valores de probabilidade

A probabilidade de um evento geralmente é representada como um número real entre 0 e 1. um evento impossível tem uma probabildade de exatamente 0, e um evento certo de acontecer tem uma probabilidade de 1, mas a recíproca não é sempre verdadeira: eventos de probabilidade 0 não são sempre impossíveis, nem os de probabilidade 1 certos. A distinção bastante sutil entre "evento certo" e "probabilidade 1" é tratado em maior detalhe no artigo sobre "quase-verdade".
A maior parte das probabilidades que ocorrem na prática são números entre 0 e 1, que indica a posição do evento no contínuo entre impossibilidade e certeza. Quanto mais próxima de 1 seja a probabilidade de um evento, mais provável é que o evento ocorra. Por exemplo, se dois eventos forem ditos igualmente prováveis, como por exemplo em um jogo de cara ou coroa, podemos exprimir a probabilidade de cada evento - cara ou coroa - como "1 em 2", ou, de forma equivalente, "50%", ou ainda "1/2".
Probabilidades também podem ser expressas como chances (odds). Chance é a razão entre a probabilidade de um evento e à probabilidade de todos os demais eventos. A chance de obtermos cara, ao lançarmos uma moeda, é dada por (1/2)/(1 - 1/2), que é igual a 1/1. Isto é expresso como uma "chance de 1 para 1" e é freqüentemente escrito como "1:1". Assim, a chance a:b para um certo evento é equivalente à probabilidade a/(a+b).
Por exemplo, a chance 1:1 é equivalente à probabilidade 1/2 e 3:2 é equivalente à probabilidade 3/5.
Ainda fica a questão de a quê exatamente pode ser atribuído uma probabilidade, e como os números atribuídos podem ser usados; isto é uma questão de interpretações de probabilidade.
Há alguns que alegam que pode-se atribuir uma probabilidade a qualquer tipo de proposição lógica incerta; esta é a interpretação bayesiana. Há outros que argumentam que a probabilidade só é aplicada apropriadamente a proposições que relacionam-se com sequências de experimentos repetidos, ou da amostragem de uma população grande; esta é a interpretação frequentista. Há ainda diversas outras interpretações que são variações de um ou de outro tipo.

[editar]Distribuições

distribuição da probabilidade é uma função que determina probabilidades para eventos ou proposições. Para qualquer conjunto de eventos ou proposições existem muitas maneiras de determinar probabilidades, de forma que a escolha de uma ou outra distribuição é equivalente a criar diferentes hipóteses sobre os eventos ou proposições em questão.
Há várias formas equivalentes de se especificar uma distribuição de probabilidade. Talvez a mais comum é especificar uma função densidade da probabilidade. Daí, a probabilidade de um evento ou proposição é obtida pela integração da função densidade.
A função distribuição pode ser também especificada diretamente. Em uma dimensão, a função distribuição é chamada de função distribuição cumulativa. As distribuições de probabilidade também podem ser especificadas via momentos ou por funções características, ou por outras formas.
Uma distribuição é chamada de distribuição discreta se for definida em um conjunto contável e discreto, tal como o subconjunto dos números inteiros; ou é chamada de distribuição contínua se tiver uma função distribuição contínua, tal como uma função polinomial ou exponencial. A maior parte das distribuições de importância prática são ou discretas ou contínuas, porém há exemplos de distribuições que não são de nenhum desses tipos.
Dentre as distribuições discretas importantes, pode-se citar a distribuição uniforme discreta, a distribuição de Poisson, a distribuição binomial, a distribuição binomial negativa e a distribuição de Maxwell-Boltzmann. Dentre as distribuições contínuas, a distribuição normal, a distribuição gama, a distribuição t de Student e a distribuição exponencial.

[editar]Probabilidade na matemática

Os axiomas da probabilidade formam a base para a teoria da probabilidade matemática. O cálculo de probabilidades pode ser frequentemente determinado pelo uso da análise combinatória ou pela aplicação direta dos axiomas. As aplicações da probabilidade vão muito além daestatística, que é geralmente baseada na ideia de distribuições de probabilidade e do teorema do limite central.
Para dar um significado matemático à probabilidade, considere um jogo de cara ou coroa. Intuitivamente, a probabilidade de dar cara, qualquer que seja a moeda, é "obviamente 50%"; porém, esta afirmação por si só deixa a desejar quanto ao rigor matemático - certamente, enquanto se pode esperar que, ao jogar essa moeda 10 vezes, teremos 5 caras e 5 coroas, não há garantias de que isso ocorrerá; é possível, por exemplo, conseguir 10 caras sucessivas. O que então o número "50%" significaria nesse contexto?
Uma proposta é usar a lei dos grandes números. Neste caso, assumimos que é exequível fazer qualquer número de arremessos da moeda, com cada resultado sendo independente - isto é, o resultado de cada jogada não é afetado pelas jogadas anteriores. Se executarmos Njogadas, e seja NH o número de vezes que a moeda deu cara, então pode-se considerar, para qualquer N, a razão NH/N.
Quando N se tornar cada vez maior, pode-se esperar que, em nosso exemplo, a razão NH/N chegará cada vez mais perto de 1/2. Isto nos permite "definir" a probabilidade Pr(H) das caras como o limite matemático, com N tendendo ao infinito, desta sequência de quocientes:
\Pr(H) = \lim_{N \to \infty}{N_H \over N}
Na prática, obviamente, não se pode arremessar uma moeda uma infinidade de vezes; por isso, em geral, esta fórmula se aplica melhor a situações nas quais já se tem fixada uma probabilidade a priori para um resultado particular (no nosso caso, nossa convenção é a de que a moeda é uma moeda "honesta"). A lei dos grandes números diz que, dado Pr(H) e qualquer número arbitrariamente pequeno ε, existe um número n tal que para todo N > n,
\left| \Pr(H) - {N_H \over N}\right| < \epsilon
Em outras palavras, ao dizer que "a probabilidade de caras é 1/2", queremos dizer que, se jogarmos nossa moeda tantas vezes o bastante,eventualmente o número de caras em relação ao número total de jogadas tornar-se-á arbitrariamente próximo de 1/2; e permanecerá ao menostão próximo de 1/2 enquanto se continuar a arremessar a moeda.
Observe que uma definição apropriada requer a teoria da medida, que provê meios de cancelar aqueles casos nos quais o limite superior não dá o resultado "certo", ou é indefinido pelo fato de terem uma medida zero.
O aspecto a priori desta proposta à probabilidade é algumas vezes problemática quando aplicado a situações do mundo real. Por exemplo, na peça Rosencrantz e Guildenstern estão mortos, de Tom Stoppard, uma personagem arremessa uma moeda que sempre dá caras, uma centena de vezes. Ele não pode decidir se isto é apenas um evento aleatório - além do mais, é possível, porém improvável, que uma moeda honesta pudesse dar tal resultado - ou se a hipótese de que a moeda é honesta seja falsa.

[editar]Notas sobre cálculos de probabilidade

A dificuldade nos cálculos de probabilidade se relacionam com determinar o número de eventos possíveis, contar as ocorrências de cada evento, contar o número total de eventos. O que é especialmente difícil é chegar a conclusões que tenham algum significado, a partir das probabilidades calculadas. Uma piada sobre probabilidade, o problema de Monty Hall, demonstra as armadilhas muito bem.

[editar]Aplicações da Teoria da Probabilidade no cotidiano

Um efeito maior da teoria da probabilidade no cotidiano está na avaliação de riscos e no comércio nos mercado de matérias-primas. Governos geralmente aplicam métodos de probabilidade na regulação ambiental onde é chamada de "análise de caminho", e estão frequentemente medindo o bem-estar usando métodos que são estocásticos por natureza, e escolhendo projectos com os quais se comprometer baseados no seu efeito provável na população como um todo, estatisticamente. De fato, não é correto dizer que estatísticas estejam envolvidas na modelagem em si, dado que, normalmente, estimativas de risco são únicas (one-time) e, portanto, necessitam de modelos mais fundamentais como, por exemplo, para determinar "a probabilidade de ocorrência de outro atentado terrorista como o de 11 de setembro em Nova York". Umalei de números pequenos tende a se aplicar a todas estas situações e à percepção dos efeitos relacionados a tais situações, o que faz de medidas de probabilidade uma questão política.
Um bom exemplo é o efeito nos preços do petróleo da probabilidade percebida de qualquer conflito mais abrangente no Oriente Médio - o que contagia a economia como um todo. A estimativa feita por um comerciante de comodidades de que uma guerra é mais (ou menos) provável leva a um aumento (ou diminuição) de preços e sinaliza a outros comerciantes aquela opinião. Da mesma forma, as probabilidades não são estimadas de forma independente nem, necessariamente, racional. A teoria de finança comportamental surgiu para descrever o efeito de talpensamento em grupo (groupthink) na definição de preços, política, paz e conflito.
Uma aplicação importante da teoria das probabilidades no dia-a-dia é a questão da confiabilidade. No desenvolvimento de muitos produtos de consumo, tais como automóveis e eletro - eletrônicos, a teoria da confiabilidade é utilizada com o intuito de se reduzir a probabilidade de falha que, por sua vez, está estritamente relacionada à garantia do produto. Outro bom exemplo é a aplicação da teoria dos jogos, uma teoria rigorosamente baseada na teoria das probabilidades, à Guerra Fria e à doutrina de destruição mútua assegurada.
Em suma, é razoável pensar que a descoberta de métodos rigorosos para estimar e combinar probabilidades tem tido um impacto profundo na sociedade moderna. Assim, pode ser de extrema importância para muitos cidadãos compreender como estimativas de chance e probabilidades são feitas e como elas contribuem para reputações e decisões, especialmente em uma democracia.

[editar]Ver também

[editar]Citações

Wikiquote
Wikiquote possui citações de ou sobre: Probabilidade
  • Damon Runyon, "It may be that the race is not always to the swift, nor the battle to the strong - but that is the way to bet."
- "pode ser que a corrida não seja sempre para o rápido nem a batalha para o forte - mas é assim que se deve apostar."
  • Pierre-Simon Laplace "It is remarkable that a science which began with the consideration of games of chance should have become the most important object of human knowledge."
- "É notável uma ciência que começou com jogos de azar tenha se tornado o mais importante objeto do conhecimento humano."
Théorie Analytique des Probabilités, 1812.
  • Richard von Mises "The unlimited extension of the validity of the exact sciences was a characteristic feature of the exaggerated rationalism of the eighteenth century" (in reference to Laplace)
- "A extensão ilimitada da validade das ciências exatas era característica do racionalismo exagerado do século XVIII." - sobre Laplace).
Probability, Statistics, and Truth, p 9. Dover edition, 1981 (republicação da segunda edição em inglês, 1957).

Referências

  1.  Introduction to Probability, por Charles Miller Grinstead e James Laurie Snell

[editar]Ligações externas